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Spontaneous symmetry breaking and switching in planar nonlinear optical antiwaveguides
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We consider guided light beams in a nonlinear planar structure described by the nonlinear Schro¨dinger
equation with a symmetric potential hill. Such an ‘‘antiwaveguide’’~AWG! structure induces a transition from
symmetric to asymmetric modes via a transcritical pitchfork bifurcation, provided that the beam’s power
exceeds a certain critical value. It is shown analytically that the asymmetric modes always satisfy the
Vakhitov-Kolokolov ~necessary! stability criterion; nevertheless, the application of a general Jones’ theorem
shows that the AWG modes are always unstable. To realize the actual character of the instability, we perform
direct numerical simulations, which reveal that a deflecting instability, which drives the asymmetric beam into
the cladding without giving rise to fanning or stripping of the beam, sets in after a propagation distance of
approximately 16 transverse widths of the AWG’s core. The symmetry-breaking bifurcation, in combination
with the deflecting instability, may be used to design an all-optical switch. The switching can easily be
controlled by means of a symmetry-breaking ‘‘hot spot’’ that acts upon an initial symmetric beam launched
with a power exceeding the bifurcation value.

PACS number~s!: 42.65.Wi, 42.65.Tg
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I. INTRODUCTION

It is commonly known that the bound states in the on
dimensional linear Schro¨dinger equation with a symmetri
potential well are always symmetric or antisymmetric. It m
seem plausible that this is also true for nonlinear wavegu
~WGs!, which are described by the nonlinear Schro¨dinger
~NLS! equation. In the present work, we demonstrate th
while this is indeed true for the NLS equation with a sym
metric potential well, which describes the nonlinear W
proper, spontaneous symmetry breaking occurs, via a t
scritical bifurcation, in the case when the NLS equation c
tains a potential hill, rather than a well. This configurati
corresponds to a nonlinearantiwaveguide~AWG!, i.e., a
structure with the reverse refractive-index difference
tween the core and cladding.

In the linear approximation, i.e., when the optical pow
is small, the light is repelled by an AWG. The beam’s pow
must exceed a certain threshold level for trapping by
AWG, the threshold power being of the same order of m
nitude as that for self-focusing@1#. The symmetry-breaking
bifurcation takes place when the power exceeds ano
~slightly larger! critical value.

A very important issue is the stability of modes trapp
by the AWG. It might naturally be expected that they m
never be completely stable. Below, we confirm this expec
tion, using a general theorem by Jones@2#. Our direct simu-
lations demonstrate that, in some cases, the instabilit
slow, allowing for the propagation of AWG modes over
distance essentially exceeding the characteristic diffrac
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length. However, the actual purport of the study of AW
modes is not an attempt to make them less unstable,
instead, their potential for use in all-optical switching d
vices, as proposed below. In fact, the moderate instability
the modes will be quiteuseful in this context, making it
possible to control the switching efficiently and reduce t
necessary size of the switch.

AWG-based switching includes two stages which, in fa
can be integrated together. In the first stage, an initial sy
metric beam with a power exceeding the bifurcatio
generating value is converted into an asymmetric beam
der the action of an external controllable disturbance in
form of a small ‘‘hot spot.’’ The particular asymmetric sta
is chosen, out of the two mutually symmetric ones, by
location of the hot spot relative to the system’s axis. In t
second stage, the asymmetric beam develops adeflecting in-
stability, which drives it into the cladding. The instabilit
does not violate the coherent structure of the beam, giv
rise to no conspicuous fanning or stripping. In fact, the sa
hot spot that controls the choice of the bifurcation bran
plays the role of a push that initiates the development of
deflecting instability.

An advantage of AWGs for potential applications is th
they have small cross sections of both the core and
trapped light beam. The cross-section size is near the ph
cal limit, i.e., on the order of the wavelength~it is quite
possible technologically to fabricate structures with cro
section size of this order of magnitude!.

A characteristic feature of AWGs, which is not possible
all in WGs, is the existence of special values of the pro
gation constant, in very narrow vicinities of which the di
fraction is balanced by the self-focusing infinite intervalsof
values of the optical power@1#. This feature suggests that th
corresponding AWG modes, provided that their instability
2804 ©2000 The American Physical Society
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slow enough, can be used in the presence of losses, a
losses would decrease the power without changing
propagation constant. This implies effective stability of t
modes against dissipative degradation. Moreover, in
same situation the losses may additionally suppress the
namical instability.

In this work, we focus on the study of asymmetric AW
modes produced by the above-mentioned spontaneous
metry breaking at a bifurcation point. Note that asymme
modes can also bifurcate from symmetric ones in ano
nonlinear symmetric planar structure, consisting of a lin
core and nonlinear cladding@3#. However, they are differen
from the modes to be found in the present work. Moreov
the core and the cladding in that structure are made of
ferent materials. The homogeneity of both the core thickn
and refractive-index difference at the core-clad interface
this heterogeneous structure can be problematic from
technological viewpoint. In contrast, an AWG structure c
be fabricated by means of diffusing an appropriate dop
which alters the linear refractive index but does not co
spicuously affect the Kerr coefficient, into a silica substra
This fabrication mode has a great technological advanta

The rest of the paper is organized as follows. The AW
model is formulated, and the asymmetric modes are inve
gated in it by means of analytical methods, in Sec. II. T
instability of the modes is studied in Sec. III, the switchi
scheme based on the asymmetric modes and their insta
is discussed in Sec. IV, and the results of the work are s
marized in Sec. V.

II. ANALYSIS OF THE ANTIWAVEGUIDE MODES

We start with the standard NLS equation,

2ik
]C

]z
1

]2C

]h2
1U~h!C1uCu2C50, ~1!

where z and h are the propagation and transverse coor
nates in the WG or AWG,k52pn/l, n is the linear refrac-
tive index,l is the light wavelength, the nonlinearity coe
ficient is normalized to be 1, and

U~h!5H U0 , uhu<hc

0, uhu>hc
~2!

~which corresponds to a step-index structure!, 2hc being the
core thickness. For the WG and AWG, respectively,U0.0
and U0,0. To look for stationary AWG modes with
propagation constantb, we substitute into Eq.~1! C(z,h)
5F(z,h)exp(ibz), and rescale the equation according to

x[h/hc , z[z/~2khc
2!, E[bhc

2 , A[U0hc
2 , R5FhcA2,

~3!

which produces the basic propagation equation in a re
malized form,

i
]R

]z
1

]2R

]x2
1@W~x!2E#R12uRu2R50, ~4!
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whereW(x) is the same potential as defined by Eq.~2! but
with U0 substituted byA @see Eq.~3!#. If R(x) does not
depend onz thenR(x) is a real function corresponding to th
ground state of the linear Schro¨dinger equation in quantum
mechanics, i.e.,R(x) has no zeros at finite values ofx, and
exponentially decays atuxu→`. In this case, after rescalin
and carrying out straightforward integration separately in
core and cladding, we obtain the equations

~dR/dx!25~E2A!R22R41C, uxu<1, ~5!

~dR/dx!25ER22R4, uxu>1, ~6!

whereC is an arbitrary integration constant, andA is positive
for WGs and negative for AWGs. Here, a difference of t
present problem from similar problems for the linear Sch¨-
dinger equation in quantum mechanics should be stresse
the linear case, the energy parameterE takes discrete eigen
values corresponding to the bound~localized! states. In the
nonlinear case, the spectrum of the values of the~renormal-
ized! propagation constantE pertaining to the localized
states iscontinuous, because a new parameter comes in
play, viz., the solution’s amplitude, which, obviously, playe
no role in the linear case.

Note that Eq.~1! allows one to define adiffraction length
zD , which provides for a characteristic scale of the propa
tion distance~below, we will need it to compare with the
distance over which a newly found mode remains effectiv
stable!: zD;X2, X being the characteristic size of the bea
in the transverse direction. In a typical case,X is about the
core thickness, or, in terms of the rescaled variables defi
in Eq. ~3!, we simply havezD;2.

The eigenfunctions determined by Eqs.~5! and ~6! must
be nonsingular solutions exponentially vanishing atuxu→`.
A straightforward consideration of the equations allows us
prove that, if the solution has a single extremum point ins
the core, then the solution is symmetric and monotonica
decaying asx varies between 0 and6`. Solutions with
more than one extremum point in the core region are o
possible for AWGs. Obviously, solutions with more than o
extremum are nonmonotonic. Both symmetric and asymm
ric nonmonotonic solutions are thus possible.

The symmetric AWG eigenmodes were considered
Ref. @4#. A characteristic feature of the eigenmodes in t
AWG is their multiplicity, i.e., one may have more than on
solution belonging to the same set of values (A,E). When
the eigenmodes are multiple, they may indeed have sev
maxima and minima in the core. A typical example of a fu
set of symmetric and asymmetric AWG eigenmodes wh
have a single maximum in the core~but may also have
minima! is shown in Fig. 1. Note that they all have no zer
at finite uxu.

The origin of the asymmetric modes can be easily und
stood. After simple manipulations, it follows from Eqs.~5!
and ~6! that the values of bothR2(x) and (dR/dx)2 must
coincide at the two core-cladding interfaces,x561, but the
signs of dR/dx at these points may be opposite or equ
which gives rise, respectively, to the symmetric and asy
metric solutions. Accordingly, aseparatrix between these
two types of solutions is that withdR/dx50 at x561.
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Asymmetric solutions with zeros at finiteuxu are also pos-
sible, but we do not consider them, as it seems likely t
they are strongly unstable.

We now proceed to a detailed consideration of the as
metric AWG solutions. The maximum and minimum valu
of the eigenfunctionR(x) inside the core,Rmax andRmin , are
related as follows from Eq.~5!:

Rmin
2 1Rmax

2 5E2A, ~7!

and Eq.~5! may be written as

dR

dx
56A~Rmax

2 2R2!~R22Rmin
2 !. ~8!

Equation~8! can be solved in terms of incomplete ellipt
integrals. However, for the actual analysis, it proves to
more convenient to define a variablew and a parametera as
follows:

R2[Rmax
2 cos2w1Rmin

2 sin2w, sin2a[~Rmax
2 2Rmin

2 !/Rmax
2 ,

~9!

and then obtain from Eq.~8!

I 1[E
0

p/2A 11cos2a

12sin2a sin2w
dw5AE2A. ~10!

Equation~11! defines the eigenvalues ofa, and, accord-
ingly, Rmax, as functions of (E2A). It can be demonstrate
that the integralI 1, as a function ofa, attains a minimum
valuep/A2 at the pointa50. Therefore, for the asymmetri
modes, the parameter (E2A) is bounded from below,E
2A>p2/2, and the equality in this relation is attained wh
Rmin5Rmax5p/2, i.e., on a degenerate mode with the co
stant valueR(x)[p/2 inside the core~it can be easily dem-
onstrated that, in this case,E52A5p2/4).

FIG. 1. An example of the full set of the antiwaveguide eige
modes with one maximum in the core and no zeros, in the casA
524.0, E52.5. Here and in other figures normalized distance
defined by Eq.~3!.
t

-

e

-

The power of the WG or AWG mode is naturally define
asN5*2`

` R2dx, which can be transformed into the expre
sion

N52AE2AI212AE, I 2[E
0

p/2A12sin2a sin2f

11cos2a
dw.

~11!

Using the Cauchy-Bunyakovsky inequality 4I 1I 2>p2, we
obtain a bound from below for the power of the AW
modes:

N>p2/212AE. ~12!

The equality in Eq.~12! is attained for the above-mentione
degenerate mode withR(x)[p/2 inside the core.

The transition from the symmetric to asymmetric AW
modes with increase of the intensity is, in fact, a typic
example of atranscritical pitchfork bifurcation~see, e.g.,
@6#!, as is illustrated by Fig. 2, showing a deviation of th
eigenmode’s maximum from the core center,Dx ~which is a

FIG. 3. An example of the evolution of the asymmetric an
waveguide’s eigenmode with increase of the beam’s powerN past
the bifurcation point.

-

s

FIG. 2. A bifurcation diagram showing the formation of th
asymmetric eigenmodes in the nonlinear antiwaveguide atA524.
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natural measure of the solution’s asymmetry!, vs the power
N, as obtained from the numerical solution. Note that sp
taneous symmetry breaking described by a similar bifur
tion diagram is well known in another nonlinear optical sy
tem, viz., a dual-core fiber@7#.

A typical example of the evolution of the AWG eigen
mode, starting from the bifurcation point, is displayed
detail in Fig. 3, where it is seen that the asymmetry m
become very strong. Note that in the case illustrated by
3, the bifurcation starts from the simplest symmetric mo
having a maximum at the center,x50. A similar bifurcation
starting from a more complicated symmetric mode whi
instead, has aminimumat the center, has also been fou
~not shown here!.

An example of the dependenceN vs E for the symmetric
mode and the evolution of this mode atA524 is shown in
Fig. 4. The pitchfork bifurcation pointb is not geometrically
singled out on this curve. Note the presence of another,tan-
gentbifurcation pointa, at which two solution branches wit
opposite signs of the derivativedN/dE merge and disappea
Other conclusions clearly following from Fig. 4 are the e
istence of the above-mentioned finite threshold power for
formation of the symmetric mode, and the existence o
gap, in terms of the propagation constantE, for a given
AWG potential-hill amplitudeA.

III. STABILITY

A very important issue is stability of the AWG modes.
simple necessary stability condition is given by the
Vakhitov-Kolokolov~VK ! criterion @5#, dN/dE.0 @obvi-
ously, Eqs.~10! and ~11! defineN as a function ofE; see,
e.g., Fig. 4#. Using the above results, it is possible to pro
analytically, after lengthy transformations, that the asymm
ric AWG mode, unlike the symmetric ones,alwayssatisfies
the VK criterion. Nevertheless, it does not seem feasible
any AWG-trapped mode may be fully stable. Indeed,
instability of the modes can be checked by means of a q

FIG. 4. An example of the dependenceN vs E for the symmetric
modes and evolution of these modes atA524; a is the tangent-
bifurcation point,b the pitchfork-bifurcation point, andc the point
corresponding to the degenerate solution with constant amplitud
the core.
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general Jones theorem@2#, which states that asufficient in-
stability condition can be formulated in terms of an auxilia
Hermitian linear operator

L̂[
d2

dx2
1W~x!16R2~x,E!2E ~13!

@which is written in terms of the notation defined by Eq
~3!#: for instability of a given mode, it is sufficient that th
operatorL̂ has, at least, two positive eigenvalues~casting the
Jones’ theorem into this form, simplified in comparison w
the original formulation given in Ref.@2#, we make use of
the fact that we consider a mode with no zeros!. The Jones
theorem was earlier applied to show the instability of a sy
metric model in the usual WG with a linear core and nonl
ear cladding@8#.

The positive eigenvalues of the operator can be fou
numerically, for a given modeR(x). We have checked that
in all the cases considered, the Jones’ criterion does pre
an instability of the modes. For instance, in the case of
asymmetric mode withA524 andE54, which turns out to
be relatively weakly unstable in direct simulations~see Fig.
5!, the positive eigenvalues of the operatorL̂ are 22.4, 12.0,
and 1.20 for the solution without, with one, and with tw
zeros, respectively. The next solution with three zeros
negative eigenvalue20.47. It may be relevant to mentio
here that in another nonlinear optical system where
~continuous-wave! beams demonstrate formation of a
asymmetric mode through a similar bifurcation, viz., a du
core optical fiber@7#, the asymmetric cw states, althoug
they were tacitly assumed to be stable@7#, were recently
demonstrated to be strongly unstable@9#.

The VK and Jones stability/instability criteria do not pr
dict particular features of the instability, which are most im
portant for applications, and must be studied by means
direct simulations. The simulations concur with the Jon
theorem in showing that all the AWG modes are unstab
Typically ~for moderate values ofE), in the simulations the
asymmetric modes persist over a propagation distance;zD
~recall thatzD is the diffraction length,;2 in the present
notation! ~see the example in Fig. 5 forE54 andA524).
Nevertheless, other simulations show that, with increase
E, the propagation distance before the onset of a conspicu
instability increases, and may become essentially larger t
zD . Even in the case when the AWG mode persists only o
a propagation distance;zD , in units of the core’s half-width
hc it is, with regard to Eq.~3!, z/(2khc

2);zD . Usually,hc

;l and, as we said above,zD;2, hence a final estimate fo
the undisturbed propagation distance for the AWG mode
z;33mm ~in the typical casen;1.5, l'1.5mm) which is
quite sufficient for switching applications~see below!, and
may be enough for direct experimental observation of
asymmetric mode.

The instability leads either to self-focusing of the beam
the core’s center or to its expulsion into the cladding, sim
larly to what is shown in Fig. 6. In the latter case, the an
between the oblique beam propagation direction and
AWG axis is determined by the AWG parameters and
beam’s power.

in
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FIG. 5. A typical example of
the numerically simulated evolu
tion of the asymmetric mode
along the propagation direction a
A524, E54. The input form of
the mode is as in Fig. 3.
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IV. APPLICATION OF SPONTANEOUS SYMMETRY
BREAKING IN THE ANTIWAVEGUIDE

TO SWITCHING

The bifurcation transforming the symmetric AWG mod
into asymmetric ones~Fig. 2!, in combination with the insta-
bility of the resultant asymmetric modes against walking in
the cladding~the deflecting instability, see Fig. 6!, can be
used to implement all-optical switching. The AWG offers,
fact, the very convenient possibility ofcontrolling the
switching: launching a symmetric beam with a power e
ceeding~by not too much! the critical~bifurcation! value, the
choice of one of the two mutually symmetric branches at
bifurcation point~see Fig. 2! can be determined by a ‘‘ho
spot,’’ created off the AWG’s center by a perpendicular la
beam focused on the waveguide surface, similar to what
proposed, in a different context, in Ref.@10#. The hot spot
will attract the beam and break its symmetry via a lo
refractive-index change induced by the Kerr effect~see Fig.
-

e

r
as

l

6!. In numerical simulations the hot spot is approximated
a small change of the refractive index;1022–1023 of the
refractive-index difference between the core and cladding
Fig. 6 the hot spot is shown having the same size in norm
ized units along thex and z axes. As it is noted above, in
non-normalized units thez axis scale is 33 times greater tha
that of thex axis. However, the results do not differ consi
erably if the longitudinal length of the hot spot is decreas
by one order of magnitude. The naturally enhanced sens
ity of the system to an external disturbance near the bifur
tion point @6# makes it possible to considerably decrease
necessary power of the controlling beam that creates the
spot. It is important to stress that, as is clearly seen in Fig
~and in a number of other simulations performed at differ
values of the parameters!, the deflecting instability of the
beam does not give rise to any conspicuous fanning or s
ping, keeping the coherent character of the beam. We st
that this finding is far from being trivial. For instance, in th
t

FIG. 6. An example of the
controllable deflection of the
guided beam initiated by the ho
spot atA524, E54.
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PRE 62 2809SPONTANEOUS SYMMETRY BREAKING AND SWITCHING . . .
multitrough switching model introduced in Ref.@10#, where
the switching was also controlled by means of a hot spo
beam could be transferred from a given trough to an adja
empty one, but this was accompanied by a strong disturba
~including stripping! of the beam.

As concerns the impact of the instability on the switchin
note that there is a strategy for design of nonlinear switch
devices assumingstimulationof the instability, when a shor
switching distance is required@11#. In the present case, th
instability of the asymmetric mode that is generated by
bifurcation will help to complete the switching process in
shorter propagation distance (&33mm, according to the es
timate obtained above!, driving the beam into the cladding
In fact, the same hot spot that helped to choose between
two asymmetric beams that might be generated by the o
nal symmetric one can also easily provide for a disturba
that will stimulate the onset of the asymmetric-beam ins
bility, pushing the beam into the cladding.

The single-channel configuration considered in this w
can be extended to include several parallel antiwavegu
~cf. Refs.@10,12#!, which might be a basis for multichanne
devices. Promising applications of such devices inclu
wavelength multiplexing, multichannel variable distributio
or attenuation, time-domain multiplexing, etc. Moreov
even in the case of the single-input AWG channel,
scheme can be made multichannel of the 1→N type, by
.
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,
e

adding to itseveraloutput WG channels that will catch an
trap the deflected beam, depending on the deflection a
~see Fig. 6!. The latter angle, in turn, can be controlled b
means of varying the intensity and position of the abo
mentioned controlling hot spot. The extension of the AW
based scheme in this direction demands detailed nume
calculations, which will be presented elsewhere@13#.

Lastly, we note that, in this work, we considered the si
plest step-index AWGs. However, one can check that es
tially the same results are also true for graded-index AW

V. CONCLUSION

In this work, we have found that an optical antiwavegui
induces a spontaneous transition from symmetric to as
metric modes via a transcritical pitchfork bifurcation, pr
vided that the beam’s intensity exceeds a certain crit
value, which is found numerically as a function of the an
waveguide’s strength. The asymmetric mode is subject
mild deflecting instability, which drives it into the cladding
without giving rise to fanning or stripping of the beam. Th
bifurcation, in combination with the deflecting instability
may be used to design a device for all-optical switching. T
switching can easily be controlled by means of a symme
breaking ‘‘hot spot’’ that acts upon an initial symmetr
beam launched with a power exceeding the bifurcation va
d
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